First-difference estimator for panel censored-selection models
نویسنده
چکیده
We propose a semiparametric first-difference estimator for panel censored-selection models where the selection equation is of tobit type. The estimator allows the unit-specific term to be arbitrarily related to regressors. The estimator minimizes a convex function and does not require any smoothing. A simulation study is provided comparing our proposal with the estimators of Wooldridge (Journal of Econometrics 68 (1995) 115) ́ and Honore and Kyriazidou (Econometric Reviews (2000)). 2001 Elsevier Science B.V. All rights reserved.
منابع مشابه
Model Selection Based on Tracking Interval Under Unified Hybrid Censored Samples
The aim of statistical modeling is to identify the model that most closely approximates the underlying process. Akaike information criterion (AIC) is commonly used for model selection but the precise value of AIC has no direct interpretation. In this paper we use a normalization of a difference of Akaike criteria in comparing between the two rival models under unified hybrid cens...
متن کاملKernel Ridge Estimator for the Partially Linear Model under Right-Censored Data
Objective: This paper aims to introduce a modified kernel-type ridge estimator for partially linear models under randomly-right censored data. Such models include two main issues that need to be solved: multi-collinearity and censorship. To address these issues, we improved the kernel estimator based on synthetic data transformation and kNN imputation techniques. The key idea of this paper is t...
متن کاملQuantile Estimation of Non-Stationary Panel Data Censored Regression Models
We propose an estimation procedure for (semiparametric) panel data censored regression models in which the error terms may be subject to general forms of non-stationarity, thus permitting heteroscedasticity over time. The proposed estimator exploits a weak structural form imposed on the individual speci ̄c e®ect. This is in contrast to the estimators introduced in Honor¶e(1992) where the individ...
متن کاملCensored Regression Quantiles with Endogenous Regressors
This paper develops a semiparametric method for estimation of the censored regression model when some of the regressors are endogenous (and continuously distributed) and instrumental variables are available for them. A “distributional exclusion” restriction is imposed on the unobservable errors, whose conditional distribution is assumed to depend on the regressors and instruments only through a...
متن کاملEstimation of Dynamic Panel Data Models with Sample Selection
We thank the editor M. Hashem Pesaran and three anonymous referees for their useful comments. 1 Summary We propose a new method for estimating dynamic panel data models with selection. The method uses backward substitution for the lagged dependent variable, which leads to an estimating equation that requires correcting for contemporaneous selection only. The estimator is valid under relatively ...
متن کامل